手机浏览器扫描二维码访问
别看考试时间还剩两个多小时,但李斌知道,后面的四道大题才是硬菜,两个半小时可不好啃。
嗯,当然是对一般人来说。
比如眼前这位,同样已经做完了第一道大题,开始审第二题的题目了。
速度也就比第一排蓉城二中那个家伙慢点。
时间飞快流逝,做完第二道大题,看向第三道,邓乐岩感觉很是疲惫。
去年他还是初三的时候就参加了省赛,还入了国决,当然,最后只拿到了铜牌。
去年省赛他还拿了满分,所以这次来考试根本没当回事,只有他自己知道这一年的时间他成长有多恐怖。
天才的一年,跟普通人的一年是不一样的。
但显然,今年的题比去年难了许多,即便是一年后的他做起来,都感觉很是吃力,让他有种去年做CMO题目的滞涩感。
尤其是那个烦人的监考老师,还不停的在旁边晃悠,让他很是恼火,恨不得给他找张椅子,把他按上去。
陈辉丝毫没有受到影响,他早就习惯了在任何环境下学习,一旦他全神贯注的去做某件事情,外界很难对他造成影响。
飞快的写完第二道平面几何的证明题,陈辉看向了第三道大题。
【设&bp;A,B为正整数,S是一些正整数构成的一个集合,具有下述性质:
(1)对任意非负整数&bp;k,有&bp;A^k∈S;
(2)若正整数&bp;∈S,则&bp;的每个正约数均属于&bp;S;
(3)若&bp;m,∈S,且&bp;m,互素,则&bp;m∈S;
(4)若&bp;∈S,则&bp;A+B∈S。
证明:与&bp;B互素的所有正整数均属于&bp;S.】
“数论?”
陈辉皱眉。
他并不擅长数论。
但他也没有自暴自弃,将已知性质和结论转化成数论语言,他轻易的就找到了目标。
就是要去构造一个与B互素的数,假设为p,再证明p∈S即可。
再根据性质3,若p,pj互素,则p·pj∈S,又根据素数分解定理,每个大于1的正整数都可以唯一地表示为若干个素数的乘积,并且这些素数的幂次是唯一的。
所以P可以写成p1^α1·p2^α2···pm^αm,其中p1到pm均为素数。
也就是说,只需要证明p^k∈S(k为任意非负整数),就能证明P∈S。
很快,陈辉就有了思路,根据题目,如果p能够被A整除,那么根据性质1和性质2,轻易就能得出p^k∈S。
可若是p不能整除A呢?
不能整除,就说明p与A也互素,同时因为P为P的分解素数,P与B互素,那么p与B也互素。
性质123都已经用了,所以接下来必然会用到性质4。
A+B∈S
这个性质应该怎么利用呢?
陈辉绞尽脑汁,却一筹莫展,这还是他洞察力提升后,第二次遇到这种情况,这让他想到了在数竞队张安国给他出的题,当时他也是像现在这般。
一个普通的大学生,一个强大的修仙者,陆寒身兼两职,凭借修仙记忆,逍遥都市,纵横人间。身具神奇术法,惊天医术,平凡学生强势崛起,杀伐决断。所有阴谋诡计通通打爆!...
新书腹黑NPC大家多多前去支持废材少年为报家仇踏上修仙之路,御神器,收神宠,传承火神秘技,从此天下纵横,以我为尊。...
她是恶魔校草的未婚妻,阴差阳错住进恶魔城堡,清晨恶魔命令道,过来,伺候我穿衣服。她气得脸通红,好想放痒痒粉。恶魔有三条法则,第一你睡我的床,或者我睡你的。第二你吃我的住我的,身心只能是我的。第三你可以有喜欢的男生,崇拜的学长,当然名字仅限于宫衍。...
本书简介他抓住浑身是血的落芙,痛苦万分,狂啸女人,你不许死,我要你永远呆在我的身边!落芙虚弱一笑我嫌你脏,无论生死,最好永不相见! … 她穿越时空,来到这个天越王朝成了富商慕容帆的小女儿慕容落芙。。。此后落芙由原本的胆小懦弱变得桀骜不驯,由原来的沉默隐忍变得活泼蛮横,由原来的无害纯良变得腹黑魅惑。。。 穿越时空前,她是最具威望的黑手世家的小魔女木梓,前途不可限量。无奈由于一场意外,在一次狙杀中失足掉水遂灵魂穿越至天越王朝。 慕容落芙,慕容帆小女儿,由于不是嫡出却拥有和她娘,曾经的天越第一美人柳含烟一样的倾城容貌,受尽大娘薛霜与姐姐慕容颖的虐待。可怜她母亲在生下她之后便离她而去,至今不知所踪,而父亲因为柳含烟的不告而别,便也十分痛恨落芙。最终被长姐颖推入湖中香消玉殒。 至此,木梓便要逆转落芙命运,活出自己的精彩。...
(温馨种田,男强女悍,一生一世一双人)破屋两间,荒田三亩,爹爹生死未卜,还被亲奶骂成扫把星。不小心穿越成渔村小农女的云舒,真想闭上眼睛再死一次。好在娘亲疼爱,妹妹相伴,还有好心村民热情相助,云舒撸撸袖子,大干一场。引来山泉水,种良田百亩。建鱼丸作坊,美名扬万里。制珍珠首饰,引皇室青睐。赚金银珠宝,成东陵首富。站在人...
新书都市超级事务所已发布,希望大家多多支持。大仇得报的凌风,本以为在剩下的时光中能够过上普通人的生活,可没想到的是一个更大的阴谋笼罩在凌风的身上!为了粉碎阴谋,保护自己的亲人,凌风重披战袍,暴打一切,专治不服!已有260万完本作品,入坑有保障!群号572752975,香茗一杯,扫榻以待!...